contents

software
 
Fluent CFD Software Models Soccer Ball Trajectory

Fluent has announced the results of pioneering work at the University of Sheffield in collaboration with Fluent Europe Ltd. As the soccer world cup fast approaches, teams compete for the slightest of advantages that could spell the difference between victory and defeat. This year's competition promises to showcase swerving kicks which often decide the outcome of the match. Some of the world's greatest goalkeepers have been beaten by unusual swerving balls which move to the left and the right before hitting the back of the net, even though they have little or no spin applied to them. The new research has found that the shape and surface of the ball, as well as its initial orientation, is critical in terms of its trajectory through the air.

A team of researchers, led by Dr Matt Carre at the Department of Mechanical Engineering at the University of Sheffield, used the most advanced software, known as Computational Fluid Dynamics (CFD), for simulating the physics of airflows in and around objects. They studied and compared airflows around four balls, all with different panel designs, each having been used at different periods over the past 36 years, up to, and including the new adidas ball to be used in the 2006 World Cup.

University PhD student and Sheffield FC player Sarah Barber, alongside Dave Mann, Principal Engineer at Fluent, used a 3D laser scanner, similar to those used in Formula 1 motor racing, to obtain accurate surface detail of each individual ball, including their stitches and seam patterns. They demonstrated that the shape, surface and asymmetry of the ball, as well as its initial orientation, has a profound effect on how the ball moves through the air after it is kicked. The side force varies according to the orientation of the ball relative to its flight, meaning that for a kick where the ball is slowly rotating, the side force could fluctuate causing it to swerve. Ultimately the nature of the swerve is affected by the initial orientation of the ball before it is kicked.

In collaboration with Dr Takeshi Asai at the University of Tsukuba in Japan, the team used wind tunnel measurements to verify their CFD studies and demonstrated that in match conditions the drag of non-spinning soccer balls has fallen by as much as 30% over the last 36 years. Newer balls, like the one to be used in the World Cup this summer, which manufacturers claim to be rounder and which have more uniform seam geometry, have been found to be more consistent in high speed kicks with little or no spin.

The aerodynamics of the soccer ball is not the only science to be examined in the weeks leading up to the World Cup. The first game of the 2006 World Cup on 9 June will take place in the purpose built FIFA World Cup Stadium in Munich, home to both Bayern Munich FC and TSV Munich 1860. The stadium was designed by the Swiss architects Jacques Duke and Pierre de Meuron, with the quality of the pitch in mind, because of a desire to have uniform airflows going over the turf when the stadium doors are open. These air movements help to ensure that the pitch grass will have optimal growing conditions between matches. Dresden based consultant, Dr. Peter Vogel of GTD GmbH used CFD software from Fluent to study the airflow in the stadium to validate its design. He was able to verify that the stadium experience is the best possible for the crowd and that the architects' visionary design conforms to high safety standards. His detailed virtual flow simulations illustrate perfectly the relatively gentle airflow patterns players will experience near the pitch surface in the space above the playing area during a game.



write your comments about the article :: © 2006 Computing News :: home page